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Unusual cycloadditions of o-quinone methides with oxazoles
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Abstract—Unusual reactions between various electron-rich oxazoles and ortho-quinone methides is described. This combination
leads to some interesting adducts.
� 2005 Elsevier Ltd. All rights reserved.
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Figure 1. Proposed construction of the elaborate benzopyran A by
cycloaddition of o-quinone methide B with heterocycle C or D.
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Until recently, controlled low temperature access to sig-
nificant quantities of o-quinone methide intermediates
was almost impossible,1 a problem which severely limi-
ted their use in synthesis. With the development of an
anionic generation mechanism triggered at low tempera-
tures,2 these venerable intermediates have found many
additional synthetic uses.3 These included the first exam-
ples of stereoselective inverse demand cycloadditions,4

which evolved into diastereoselective reactions and
enabled the asymmetric synthesis of chiral benzopyrans.5

In this letter, we demonstrate that the reactivity of o-quin-
one methides proves sufficient to dearomatize and
cause a reaction with various 2-amino-4-alkyl oxazoles.
However, the reaction manifold (cycloaddition vs 1,4-
conjugate addition) depends upon the electronic nature
of the 4-alkyl substituent.

Sometime ago, we became interested in constructing
elaborate 2H-1-benzopyrans such as A, bearing alkoxy
and alkyl substituents at the 2-position, along with an
alkoxy substituent at the 3-position (Fig. 1). This
arrangement of atoms can be found in 5,6-aryloxy-spiro-
ketal of heliquinomycin. We envisioned that benzopyran
A could arise from a regioselective cycloaddition
between o-quinone methide B and the 4-substituted
dioxene C. However, there are very few methods for
the preparation of these fragile dioxenes.6 The robust
oxazole D appeared to offer synthetic equivalence for
our strategy.

A thorough literature search revealed a single report by
Dondoni employing electron-rich 2-amino-oxazoles
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with several exceedingly electron deficient symmetric
4p dienes (Fig. 2).7 The yields reported for oxazoles with
4-alkyl substituents were significantly lower than their
hydrido counterparts.
Cl Cl

R = -H (87%) 
R = -Me (71%)

O N
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R = -Me (0%)

Figure 2. Some of Dondoni�s 1986 cycloaddition examples.
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Figure 3. Oxazoles 1–6 examined in combination with o-quinone
methides 11 and 13.
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Scheme 2. Cycloadditions of oxazoles 2 and 5 with o-quinone
methides 11 and 13.
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Because of our experience with o-quinone methide reac-
tivity, we first examined their capacity for reaction with
commercially available 4-alkyl oxazole 1 (Fig. 3).
Deprotonation of either of the ortho-OBoc hydroxy-
methyl aromatic compounds (9 or 10,8 0.1 M in Et2O
or THF) with tert-butyl magnesium bromide leads to
–OBoc migration and subsequent b-elimination furnish-
ing the corresponding o-quinone methide intermediate
(cf. 11 and 13, Scheme 1). Although these o-quinone
methide species are exceedingly reactive, 4-methyl-oxa-
zole (1) proved ineffective as a nucleophile. Instead, o-
quinone methide intermediate undergoes self-destruc-
tion through known manifolds, such as Diels–Alder
dimerization and trimerization.

Next, we examined 2-amino-4-methyl-oxazole (2) for
which Dondoni has developed an efficient synthesis.9

The initial findings, though unexpected, were encourag-
ing—the 1,4-conjugate addition adduct 1210 forms as
the sole product in a respectable 60% yield (Scheme 2).
In our past experiences with these o-quinone methides,
the conjugate addition adduct only arises with highly
polarized 2p dienophiles such as enamines. We designed
and synthesized several more elaborate oxazoles, such as
3–6.11 Generation of o-quinone methide 13 from 10 in
the presence of oxazole 5 leads to two adducts in a
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Scheme 1. Dissatisfactory outcome between o-quinone methides 11

and 13 with oxazole 1.
62% combined yield. In this instance, the 1,4-addition
product 1512 predominates in the mixture, and the
[4+2] cycloadduct 14 arises in small amounts (10:1).

Given the preceding result, we were surprised to find
that the silylated 4-hydroxymethyl oxazole 4 undergoes
reaction with o-quinone methide 11 generated under
similar conditions to afford in 66% combined yield a
3:1 mixture favoring the [4+2] adduct 1613 over the
1,4-conjugate addition product 1714 (Scheme 3). In addi-
tion, the carbonate protected 4-hydroxymethyl oxazole
3, undergoes cycloaddition with quinone methide 13
and affords benzopyran 1815 in 46% yield as the only
identifiable product.

It seemed that a subtle allylic stereoelectronic inductive
effect governed the outcome of the reaction (Fig. 4).
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Scheme 3. Cycloadditions of oxazoles 3 and 4 with o-quinone
methides 11 and 13.
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The 2-amino oxazoles displaying an electron rich substi-
tuent at the 4-position (R = H, Bn) underwent highly
asynchronous reactions leading to 1,4-conjugate
addition adducts, while the oxazoles displaying an
electron-withdrawing substituent at the 4-position
(R = –OTBS, –OCO2Et) underwent a synchronous
reaction affording the [4+2]-cycloadduct.

To test this supposition, we generated o-quinone meth-
ide 13 in the presence of the deprotonated oxazole
(±)-6—an analog of 4-benzylated oxazole 5 that had
led almost exclusively to 1,4-conjugate addition adduct
15 (Scheme 2). In the case of the deprotonated oxazole
(±)-6, however, the reaction proceeds to the cycloadduct
19 (Scheme 4).16 The fact that none of the corresponding
1,4-addition adduct is observed further substantiates
our claim—less polarized 2-amino-oxazoles proceed
through synchronous cycloadditions, while the more
polar systems resemble enamines in their asynchronous
reactivity. The stereointegrity of the reaction attests to
the kinetic preference for a single endo transition state.
Therefore, if a method was available for procuring the
hydroxyl stereocenter in oxazole 6, then the stereochem-
istry of the benzopyran would be accessible in an abso-
lute sense.

Chromatography illuminates a thermodynamic equilib-
rium between the conjugate addition and cycloaddition
adducts of the preceding schemes with mild acid
(Fig. 5). For example, if the purified oxazole 15 is sub-
jected to trace acid, a 3:1 mixture of the cycloadduct
14 and oxazole 15 forms. The purified oxazoles 12 and
18 also proceed to a mixture of [4+2] and 1,4-addition
adducts; (approximately 1:1 in both of these cases) upon
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Scheme 4. Diastereoselective cycloaddition.
addition of trace acid or by standing in CDCl3 for pro-
longed periods.

With oxazole 18 in hand, and knowledge of the acid-
mediated equilibrium, we were curious to see the out-
come upon hydrogenolysis to phenol 20.17 In principle,
the resulting phenolic benzopyran 20 might undergo
spiroketalization to 5,6-aryloxyspiroketal 24, a struc-
tural ensemble similar to that found in rubromycin
and heliquinomycin. Our initial experiments proved
disappointing. In all our attempts to induce spiroketal-
ization, the undesired tetracyclic compound 2218 forms.
We speculate that chromene 21 may precede compound
22, and that it succumbs to rapid air oxidation. How-
ever, further experiments are required to substantiate
this hypothesis (Scheme 5).

In conclusion, the unknown reactivity of some o-quin-
one methides and 2-amino-oxazoles has been revealed.
Their combination leads to an interesting assortment
of benzopyrans and oxazoles. Access to these heterocy-
clic compounds may prove to be of some therapeutic
interest in the future.
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